1.8 V/2.5 V, 10 GHz ÷2 Clock Divider with CML Outputs

Multi-Level Inputs w/ Internal Termination

NB7V32M

Description

The NB7V32M is a differential $\div 2$ Clock divider with asynchronous reset. The differential Clock inputs incorporate internal 50 Ω termination resistors and will accept LVPECL, CML and LVDS logic levels.

The NB7V32M produces a $\div 2$ output copy of an input Clock operating up to 10 GHz with minimal jitter.

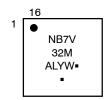
The RESET Pin is asserted on the rising edge. Upon power-up, the internal flip-flops will attain a random state; the Reset allows for the synchronization of multiple NB7V32M's in a system.

The 16 mA differential CML output provides matching internal 50 Ω termination which guarantees 400 mV output swing when externally receiver terminated with 50 Ω to V_{CC} .

The NB7V32M is the 1.8 V/2.5 V version of the NB7L32M (2.5 V/3.3 V) and is offered in a low profile 3 mm x 3 mm 16-pin QFN package. The NB7V32M is a member of the GigaComm[™] family of high performance clock products. Application notes, models, and support documentation are available at www.onsemi.com.

Features

- Maximum Input Clock Frequency > 10 GHz, typical
- Random Clock Jitter < 0.8 ps RMS
- 200 ps Typical Propagation Delay
- 35 ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV Peak-to-Peak, Typical
- Operating Range: $V_{CC} = 1.71 \text{ V}$ to 2.625 V with GND = 0 V
- Internal 50 Ω Input Termination Resistors
- QFN-16 Package, 3 mm x 3 mm
- -40°C to +85°C Ambient Operating Temperature
- These Devices are Pb-Free and RoHS Compliant


ON Semiconductor®

www.onsemi.com

QFN-16 MN SUFFIX CASE 485G

MARKING DIAGRAM*

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week

vv = vvork vveek = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

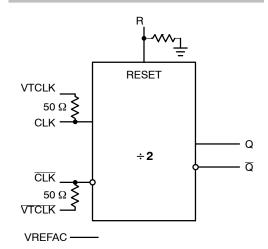
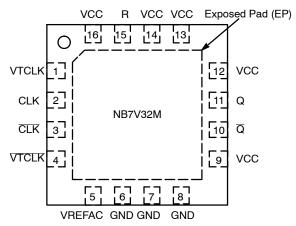



Figure 1. Simplified Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Table 1. TRUTH TABLE

CLK	CLK	R	Q	Q
х	х	Н	L	Н
Z	W	L	CLK ÷ 2	CLK ÷ 2

Z = LOW to HIGH Transition W = HIGH to LOW Transition x = Don't Care

Figure 2. Pin Configuration (Top View)

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description
1	VTCLK	-	Internal 50 Ω Termination Pin for CLK
2	CLK	LVPECL, CML, LVDS Input	Non-inverted Differential CLK Input. (Note 1)
3	CLK	LVPECL, CML, LVDS Input	Inverted Differential CLK Input. (Note 1)
4	VTCLK	-	Internal 50 Ω Termination Pin for $\overline{\text{CLK}}$
5	VREFAC	-	Internally Generated Output Voltage Reference for Capacitor-Coupled Inputs, only
6	GND	-	Negative Supply Voltage
7	GND	-	Negative Supply Voltage
8	GND	-	Negative Supply Voltage
9	VCC	-	Positive Supply Voltage. (Note 2)
10	Q	CML Output	Inverted Differential Output
11	Q	CML Output	Non-Inverted Differential Output
12	VCC	-	Positive Supply Voltage. (Note 2)
13	VCC	-	Positive Supply Voltage. (Note 2)
14	VCC	-	Positive Supply Voltage. (Note 2)
15	R	LVCMOS Input	Asynchronous Reset Input. Internal 75 kΩ pulldown to GND.
16	VCC	-	Positive Supply Voltage. (Note 2)
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and must be electrically and thermally connected to GND on the PC board.

In the differential configuration when the input termination pins (VTCLK, VTCLK) are connected to a common termination voltage or left open, and if no signal is applied on CLK/CLK input, then the device will be susceptible to self-oscillation. Q/Q outputs have internal 50 Ω source termination resistors.

^{2.} VCC and GND pins must be externally connected to a power supply for proper operation.

Table 3. ATTRIBUTES

Characteristics	Value
ESD Protection Human Body Model Machine Model	> 4 kV > 200 V
Moisture Sensitivity 16–QFN	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	164
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	•

For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		3.0	V
V _{IN}	Positive Input Voltage	GND = 0 V		-0.5 to V _{CC} + 0.5 V	V
V _{INPP}	Differential Input Voltage D - D			1.89	V
I _{IN}	Input Current Through R _T (50 Ω Resistor)			±40	mA
lout	Output Current Through R $_{\rm T}$ (50 Ω Resistor)			±40	mA
I _{VREFAC}	VREFAC Sink/Source Current			±1.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case) (Note 3)		QFN-16	4	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

3. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS POSITIVE CML OUTPUT V_{CC} = 1.71 V to 2.625 V; GND = 0 V; T_A = -40°C to 85°C (Note 4)

Symbol	Characteristic	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT	•			
I _{CC}	Power Supply Current (Inputs and Outputs Open) $ V_{CC} = 2.5 \ V \pm 5\% $ $ V_{CC} = 1.8 \ V \pm 5\% $		90 80	100 90	mA
CML OU	тритѕ	•			
V _{OH}	Output HIGH Voltage (Note 5) $ V_{CC} = 2.5 \text{ V} $ $ V_{CC} = 1.8 \text{ V} $	V _{CC} – 30 2470 1770	V _{CC} – 1 2490 1790	V _{CC} 2500 1800	mV
V _{OL}	Output LOW Voltage (Note 5) $ V_{CC} = 2.5 \ V_{CC} = 2.5 \ V $	V _{CC} – 600 1900	V _{CC} – 500 2000	V _{CC} – 400 2100	mV
	V _{CC} = 1.8 V V _{CC} = 1.8 V	V _{CC} – 550 1250	V _{CC} – 450 1350	V _{CC} – 350 1450	
DIFFERE	ENTIAL INPUTS DRIVEN SINGLE-ENDED (Note 6) (Figures 5 and 7)				
V_{th}	Input Threshold Reference Voltage Range (Note 7)	1050		V _{CC} - 100	mV
V_{IH}	Single-Ended Input HIGH Voltage	V _{th} + 100		V _{CC}	mV
V_{IL}	Single-Ended Input LOW Voltage	GND		V _{th} – 100	mV
V_{ISE}	Single-Ended Input Voltage (V _{IH} - V _{IL})	200		1200	mV
VREFAC					
V _{REFAC}	Output Reference Voltage @ 100 μ A for capacitor– coupled inputs, only V _{CC} = 2.5 V (Note 8) V _{CC} = 1.8 V	V _{CC} - 850 V _{CC} - 750		V _{CC} - 500 V _{CC} - 450	mV
DIFFERE	INTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 6 and 9) (Note 9)	<u>I</u>	<u>I</u>		
V_{IHD}	Differential Input HIGH Voltage	1100		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	GND		V _{CC} – 100	mV
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	100		1200	mV
V_{CMR}	Input Common Mode Range (Differential Configuration, Note 10) (Figure 9)	1050		V _{CC} – 50	mV
I _{IH}	Input HIGH Current (VTCLK/VTCLK Open)	-150		150	uA
I _{IL}	Input LOW Current (VTCLK/VTCLK Open)	-150		150	uA
CONTRO	DL INPUT (Reset Pin)				
V_{IH}	Input HIGH Voltage for Control Pin	V _{CC} - 200		V _{CC}	mV
V_{IL}	Input LOW Voltage for Control Pin	GND		200	mV
I _{IH}	Input HIGH Current	-150		150	uA
I _{IL}	Input LOW Current	-150		150	uA
TERMINA	ATION RESISTORS	-	-	-	
R _{TIN}	Internal Input Termination Resistor (@ 10 mA)	45	50	55	Ω
	Internal Output Termination Resistor (@ 10 mA)	+			

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- Input and output parameters vary 1:1 with V_{CC}.
 CML outputs loaded with 50 Ω to V_{CC} for proper operation.
 V_{th}, V_{IH}, V_{IL} and V_{ISE} parameters must be complied with simultaneously.
 V_{th} is applied to the complementary input when operating in single-ended mode.
 V_{REFAC} will not be less than GND + 1050 mV.
 V_{IHD}, V_{ILD}, V_{ID} and V_{CMR} parameters must be complied with simultaneously.
 V_{CMR} min varies 1:1 with GND, V_{CMR} max varies 1:1 with V_{CC}. The V_{CMR} range is referenced to the most positive side of the differential input signal input signal.

Table 6. AC CHARACTERISTICS V_{CC} = 1.71 V to 2.625 V; GND = 0 V; T_A = -40°C to 85°C (Note 11)

Symbol	Characteristic			Тур	Max	Unit
f _{MAX}	Maximum Input Clock Frequency		10			GHz
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) (Note 12) (Figure 3)	f _{in} ≤ 10GHz	280	400		mV
t _{PLH} , t _{PHL}	Propagation Delay to Differential Outputs, @ 1 GHz, measured at differential cross-point	CLK/CLK to Q, Q R to Q, Q	150	200 200	275	ps
t _{PLH} TC	Propagation Delay Temperature Coefficient	•		50		∆fs/°C
t _{skew}	Duty Cycle Skew (Note 13) Device – Device skew (t _{pdmax} – t _{pdmin})				20 50	ps
t _{RR}	Reset Recovery (See Figure 11)		300	135		
t _{PW}	Minimum Pulse Width R		500	200		
t _{DC}	Output Clock Duty Cycle (Reference Duty Cycle = 50%) f _{in} 3 ≤ 10 GHz		45	50	55	%
^t JITTER	RJ – Output Random Jitter (Note 14) f _{in} ≤ 10 GHz			0.2	0.8	ps RMS
V _{INPP}	Input Voltage Swing (Differential Configuration) (Figure 10) (Note 15)		100		1200	mV
t _{r,} t _f	Output Rise/Fall Times @ 1 GHz (20% - 80%), Q, Q			35	60	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

12. Output voltage swing is a single-ended measurement operating in differential mode.

14. Additive RMS jitter with 50% duty cycle clock signal.

15. Input voltage swing is a single-ended measurement operating in differential mode.

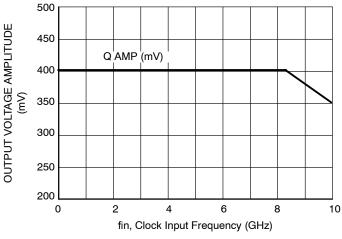


Figure 3. CLOCK Output Voltage Amplitude (V_{OUTPP}) vs. Input Frequency (f_{in}) at Ambient Temperature (Typ)

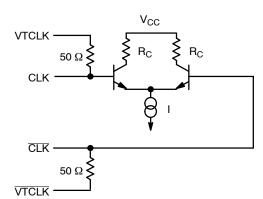


Figure 4. Input Structure

^{11.} Measured using a 1 GHz, V_{INPP}min, 50% duty-cycle clock source. All output loading with external 50 Ω to V_{CC}. Input edge rates 40 ps (20% – 80%).

^{13.} Duty cycle skew is defined only for differential operation when the delays are measured from cross-point of the inputs to the cross-point of the outputs. Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw} and T_{pw} @ 1 GHz. Skew is measured between outputs under identical transitions and conditions.

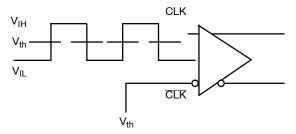


Figure 5. Differential Input Driven Single-Ended

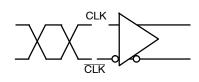


Figure 6. Differential Inputs
Driven Differentially

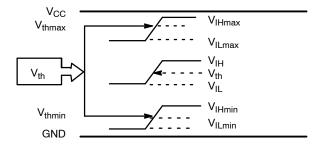


Figure 7. V_{th} Diagram

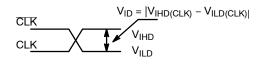


Figure 8. Differential Inputs Driven Differentially

Figure 9. V_{CMR} Diagram

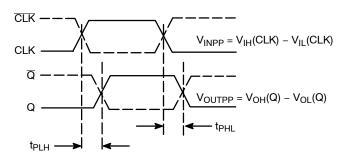


Figure 10. AC Reference Measurement

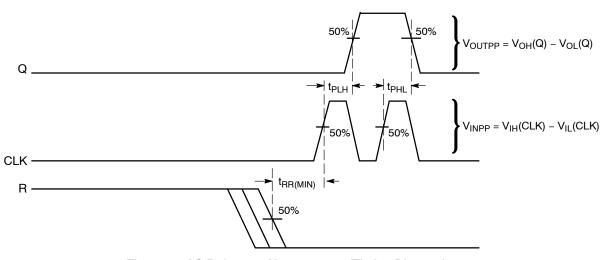


Figure 11. AC Reference Measurement (Timing Diagram)

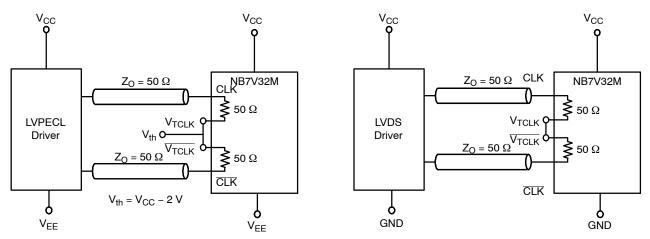


Figure 12. LVPECL Interface

Figure 13. LVDS Interface

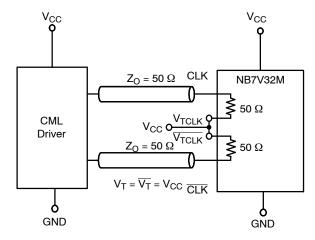


Figure 14. Standard 50 Ω Load CML Interface

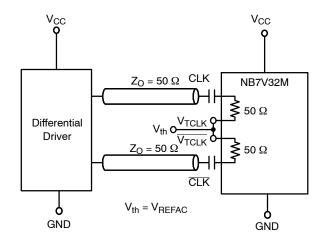


Figure 15. Capacitor–Coupled Differential Interface (V_{TCLK}/V_{TCLK} Connected to V_{REFAC} ; V_{REFAC} Bypassed to Ground with 0.1 μF Capacitor)

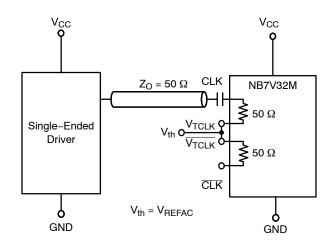


Figure 16. Capacitor–Coupled Single–Ended Interface (V_{TCLK}/V_{TCLK} Connected to V_{REFAC} ; V_{REFAC} Bypassed to Ground with 0.1 μF Capacitor)

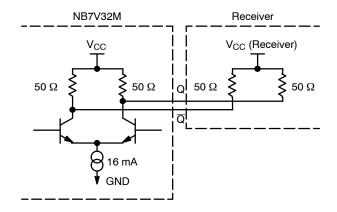


Figure 17. Typical CML Output Structure and Termination

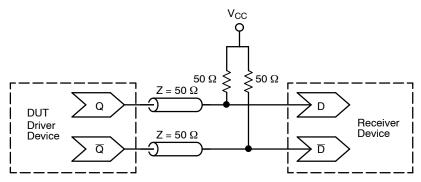


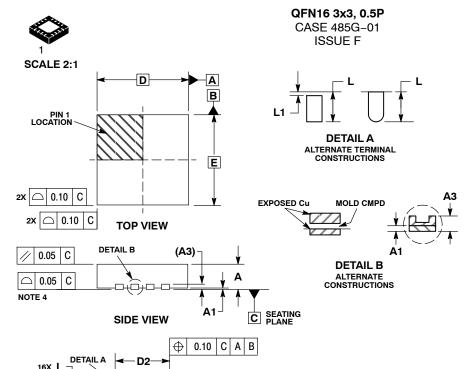
Figure 18. Typical Termination for CML Output Driver and Device Evaluation

ORDERING INFORMATION

Device	Package	Shipping [†]
NB7V32MMNTXG	QFN-16 (Pb-free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

The products described herein (NB7V32M), may be covered by U.S. patents including 6,362,644. There may be other patents pending. GigaComm is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


16X K

16

BOTTOM VIEW

е

e/2

E2

0.10 Ф

0.05 С NOTE 3

CAB

16X b

DATE 22 JUN 2011

NOTES:

- ANTES.

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

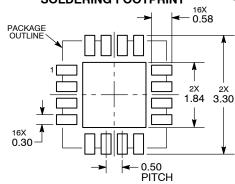
 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3.
- CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	A 0.80 0.90 1				
A 1	0.00	0.03	0.05		
А3	0	.20 REF			
b	0.18 0.24 0.30				
D	3	.00 BSC			
D2	1.65	1.75	1.85		
Е	3	.00 BSC			
E2	1.65 1.75 1.85				
е	0.50 BSC				
K	0.18 TYP				
L	0.30 0.40 0.50				
L1	0.00 0.08 0.15				

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

= Assembly Location L = Wafer Lot


= Year W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON04795D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	QFN16, 3X3 MM, 0.5 PITCH	1	PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative