Single Input Buffer

NL17SZ16

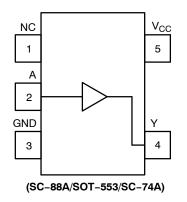
The NL17SZ16 is a single input Buffer in tiny footprint packages.

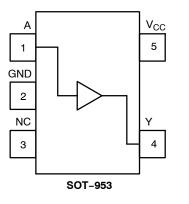
Features

- $\bullet\,$ Designed for 1.65 V to 5.5 V V_{CC} Operation
- 2.4 ns t_{PD} at V_{CC} = 5 V (typ)
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.0 V
- Available in SC-88A, SC-74A, SOT-553, SOT-953 and UDFN6 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Logic Symbol

ON Semiconductor®


www.onsemi.com


		MARKING DIAGRAMS
	SC-88A DF SUFFIX CASE 419A	□ □ ×× м• • •
E	SC-74A DBV SUFFIX CASE 318BQ	
Contraction of the second	SOT-553 XV5 SUFFIX CASE 463B	XX M• • •
	SOT-953 P5 SUFFIX CASE 527AE	
	UDFN6 1.45 x 1.0 CASE 517AQ	● ×W
Ŷ	UDFN6 1.0 x 1.0 CASE 517BX	1 • X M
XX M	= Specific Devi = Date Code* = Pb-Free Pac	
	Microdot may be in eil ode orientation and/o	
	pending upon manufa	

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

NL17SZ16

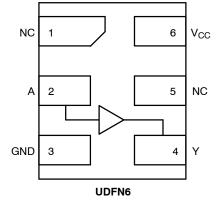


Figure 2. Pinout (Top View)

PIN ASSIGNMENT

(SC-88A/SOT-553/SC-74A)

Pin	Function		
1	NC		
2	A		
3	GND		
4	Y		
5	V _{CC}		

PIN ASSIGNMENT (SOT-953)

Pin	Function
1	А
2	GND
3	NC
4	Y
5	V _{CC}

PIN ASSIGNMENT (UDFN)

Pin	Function
1	NC
2	A
3	GND
4	Y
5	NC
6	V _{CC}

FUNCTION TABLE

A Input	Y Output
L	L
Н	Н

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V_{CC}	DC Supply Voltage SC-88A (NLV SC-74A, SC-88A, SOT-953, SOT-553, UDFNe		V
V _{IN}	DC Input Voltage SC-88A (NLV SC-74A, SC-88A, SOT-953, SOT-553, UDFNe		V
V _{OUT}	DC Output Voltage Active-Mode (High or Low State SC-88A (NLV) Tri-State Mode (Note 1 Power-Down Mode (V _{CC} = 0 V	-0.5 to +7.0	V
	DC Output Voltage Active-Mode (High or Low State SC-74A, SC-88A, SOT-953, SOT-553, UDFN6 Tri-State Mode (Note 1 Power-Down Mode (V _{CC} = 0 V	-0.5 to +6.5	V
I _{IK}	DC Input Diode Current V _{IN} < GNE	-50	mA
I _{OK}	DC Output Diode Current V _{OUT} < GNE	-50	mA
I _{OUT}	DC Output Source/Sink Current	±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 secs	260	°C
TJ	Junction Temperature Under Bias	+150	°C
θ_{JA}	Thermal Resistance (Note 2) SC-884 SC-744 SOT-55 SOT-95 UDFN6	320 324 254	°C/W
P _D	Power Dissipation in Still Air SC-88/ SC-74/ SOT-55 SOT-95 UDFN0	390 386 491	mW
MSL	Moisture Sensitivity	Level 1	-
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	_
V_{ESD}	ESD Withstand Voltage (Note 3) Human Body Mode Charged Device Mode		V
I _{Latchup}	Latchup Performance (Note 4)	±100	mA

Laterup Learning Forematice (1000 T)
± 100 mA
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Applicable to devices with outputs that may be tri-stated.
Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.
Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

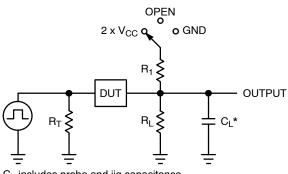
Symbol	Characteristics		Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V	
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}		ve–Mode (High or Low State) Tri–State Mode (Note 1) wer–Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 5.5 5.5	
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time SC-88A (NLV)		0 0	100 20	ns/V
	Input Rise and Fall Time (SC-74A, SC-88A, SOT-953, SOT-553, UDFN6)	$\begin{array}{l} V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 4.5 \ V \ to \ 5.5 \ V \end{array}$	0 0 0 0	20 20 10 5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

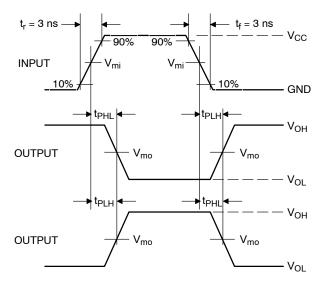
			Vcc	Т	م = 25°0	2	–55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
V _{IH}	High-Level Input		1.65 to 1.95	0.65 V _{CC}	-	_	0.65 V _{CC}	_	V
	Voltage		2.3 to 5.5	0.70 V _{CC}	-	-	0.70 V _{CC}	-	
VIL	Low-Level Input		1.65 to 1.95	-	-	$0.35 V_{CC}$	-	$0.35 V_{CC}$	V
	Voltage		2.3 to 5.5	-	-	0.30 V _{CC}	-	0.30 V _{CC}	
V _{OH}	High-Level Output Voltage	$ \begin{array}{l} V_{IN} = V_{IH} \mbox{ or } V_{IL} \\ I_{OH} = -100 \ \mu A \\ I_{OH} = -4 \ m A \\ I_{OH} = -8 \ m A \\ I_{OH} = -12 \ m A \\ I_{OH} = -16 \ m A \\ I_{OH} = -24 \ m A \\ I_{OH} = -32 \ m A \end{array} $	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	V _{CC} 1.4 2.1 2.4 2.7 2.5 4.0		V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8		V
V _{OL}	Low-Level Output Voltage		1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5		- 0.08 0.2 0.22 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.4 0.55 0.55		0.1 0.24 0.3 0.4 0.4 0.55 0.55	V
I _{IN}	Input Leakage Current	$V_{IN} = 5.5 \text{ V or GND}$	1.65 to 5.5	-	-	±0.1	-	±1.0	μA
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5	-	_	1.0	-	10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS

			V _{cc}	T,	T _A = 25°C		–55°C ≤ T		
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
t _{PLH}	Propagation Delay, A to Y	R_L = 1 MΩ, C_L = 15 pF	1.65 to 1.95	-	5.3	11.4	-	12.0	ns
t _{PHL}	(Figures 3 and 4)	R_L = 1 MΩ, C_L = 15 pF	2.3 to 2.7	-	2.9	6.5	-	7.0	
		R_L = 1 MΩ, C_L = 15 pF	3.0 to 3.6	-	2.1	4.5	-	4.7]
		$R_L = 500 \Omega$, $C_L = 50 pF$		-	2.9	5.0	-	5.2	
		R_L = 1 MΩ, C_L = 15 pF	4.5 to 5.5	-	1.8	3.9	-	4.1	
		$R_L = 500 \ \Omega, \ C_L = 50 \ pF$		_	2.4	4.3	-	4.5	

CAPACITIVE CHARACTERISTICS


Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{OUT}	Output Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V _{CC} = 3.3 V, V _{IN} = 0 V or V _{CC} 10 MHz, V _{CC} = 5.5 V, V _{IN} = 0 V or V _{CC}	9 11	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

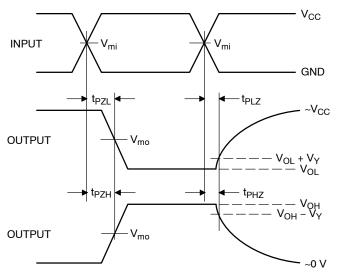

 $\begin{array}{l} C_L \text{ includes probe and jig capacitance} \\ R_T \text{ is } Z_{OUT} \text{ of pulse generator (typically 50 } \Omega) \\ f = 1 \mbox{ MHz} \end{array}$

Figure 3. Test Circuit

Test	Switch Position	C _L , pF	R_L, Ω	R ₁ , Ω		
t _{PLH} / t _{PHL}	Open	See AC Characteristics Table				
t _{PLZ} / t _{PZL}	$2 \times V_{CC}$	50	500	500		
t _{PHZ} / t _{PZH}	GND	50	500	500		
V - Don't Car	·0					

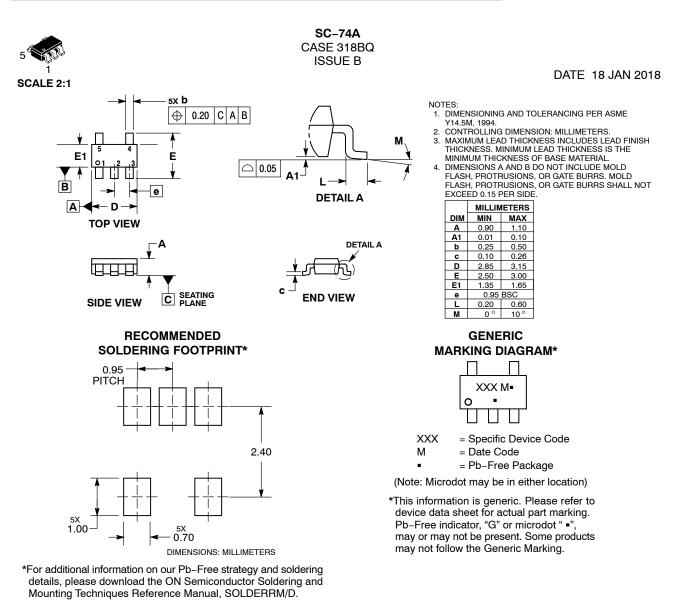
X = Don't Care

Figure 4. Switching Waveforms

		Vm		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
3.0 to 3.6	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3

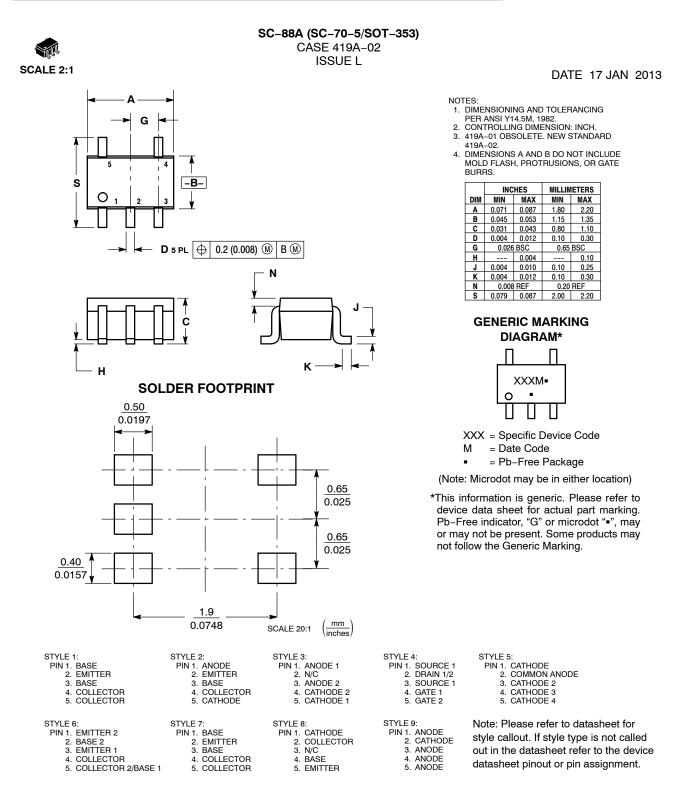
DEVICE ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
NL17SZ16DFT2G	SC-88A	LR	Q4	3000 / Tape & Reel
NLV17SZ16DFT2G* (In Development)	SC-88A	TBD	Q4	3000 / Tape & Reel
NL17SZ16DBVT1G	SC-74A	AL	Q4	3000 / Tape & Reel
NL17SZ16XV5T2G	SOT-553	LR	Q4	4000 / Tape & Reel
NL17SZ16P5T5G (In Development)	SOT-953	TBD	Q2	8000 / Tape & Reel
NL17SZ16MU1TCG (In Development)	UDFN6, 1.45 x 1.0, 0.5P	TBD	Q4	3000 / Tape & Reel
NL17SZ16MU3TCG (In Development)	UDFN6, 1.0 x 1.0, 0.35P	TBD	Q4	3000 / Tape & Reel

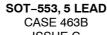

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

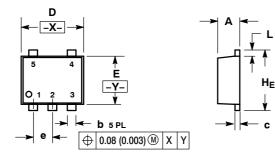
Pin 1 Orientation in Tape and Reel

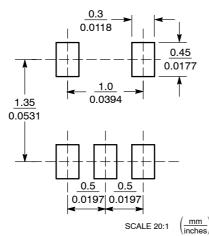

Direction of Feed 0 0 Ο Q1 Q2 Q1 Q2 01 02 Q4 Q3 04 Q3 04 03

DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-74A		PAGE 1 OF 1	
ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.				


DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88A (SC-70-5/SOT-353)		PAGE 1 OF 1	

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.




SCALE 4:1

ISSUE C

RECOMMENDED **SOLDERING FOOTPRINT***

NOTES:

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.55	1.60	1.65	0.061	0.063	0.065	
E	1.15	1.20	1.25	0.045	0.047	0.049	
е		0.50 BSC			0.020 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.55	1.60	1.65	0.061	0.063	0.065	

GENERIC **MARKING DIAGRAM***

XXM-

XX = Specific Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. ANODE
2. EMITTER	2. COMMON ANODE	2. N/C	2. DRAIN 1/2	2. EMITTER
3. BASE	3. CATHODE 2	3. ANODE 2	3. SOURCE 1	3. BASE
4. COLLECTOR	4. CATHODE 3	4. CATHODE 2	4. GATE 1	4. COLLECTOR
5. COLLECTOR	5. CATHODE 4	5. CATHODE 1	5. GATE 2	5. CATHODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE	
2. BASE 2	2. EMITTER	2. COLLECTOR	2. CATHODE	
3. EMITTER 1	3. BASE	3. N/C	3. ANODE	
4. COLLECTOR 1	4. COLLECTOR	4. BASE	4. ANODE	
5. COLLECTOR 2/BASE 1	5. COLLECTOR	5. EMITTER	5. ANODE	

DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolle		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Prir versions are uncontrolled except when stamped		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-553, 5 LEAD		PAGE 1 OF 2	

DOCUMENT NUMBER: 98AON11127D

PAGE 2 OF 2

ISSUE	REVISION	DATE
Α	ADDED STYLES 3–9. REQ. BY D. BARLOW	11 NOV 2003
В	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO	27 MAY 2005
С	UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	20 MAR 2013

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product culd create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative